1,154 research outputs found

    Spin conductivity in almost integrable spin chains

    Full text link
    The spin conductivity in the integrable spin-1/2 XXZ-chain is known to be infinite at finite temperatures T for anisotropies -1 < Delta < 1. Perturbations which break integrability, e.g. a next-nearest neighbor coupling J', render the conductivity finite. We construct numerically a non-local conserved operator J_parallel which is responsible for the finite spin Drude weight of the integrable model and calculate its decay rate for small J'. This allows us to obtain a lower bound for the spin conductivity sigma_s >= c(T) / J'^2, where c(T) is finite for J' to 0. We discuss the implication of our result for the general question how non-local conservation laws affect transport properties.Comment: 6 pages, 5 figure

    Temperature, inocula and substrate: contrasting electroactive consortia, diversity and performance in microbial fuel cells

    Get PDF
    The factors that affect microbial community assembly and its effects on the performance of bioelectrochemical systems are poorly understood. Sixteen microbial fuel cell (MFC) reactors were set up to test the importance of inoculum, temperature and substrate: Arctic soil versus wastewater as inoculum; warm (26.5°C) versus cold (7.5°C) temperature; and acetate versus wastewater as substrate. Substrate was the dominant factor in determining performance and diversity: unexpectedly the simple electrogenic substrate delivered a higher diversity than a complex wastewater. Furthermore, in acetate fed reactors, diversity did not correlate with performance, yet in wastewater fed ones it did, with greater diversity sustaining higher power densities and coulombic efficiencies. Temperature had only a minor effect on power density, (Q10: 2 and 1.2 for acetate and wastewater respectively): this is surprising given the well-known temperature sensitivity of anaerobic bioreactors. Reactors were able to operate at low temperature with real wastewater without the need for specialised inocula; it is speculated that MFC biofilms may have a self-heating effect. Importantly, the warm acetate fed reactors in this study did not act as direct model for cold wastewater fed systems. Application of this technology will encompass use of real wastewater at ambient temperatures

    Signatures of integrability in charge and thermal transport in 1D quantum systems

    Get PDF
    Integrable and non-integrable systems have very different transport properties. In this work, we highlight these differences for specific one dimensional models of interacting lattice fermions using numerical exact diagonalization. We calculate the finite temperature adiabatic stiffness (or Drude weight) and isothermal stiffness (or ``Meissner'' stiffness) in electrical and thermal transport and also compute the complete momentum and frequency dependent dynamical conductivities σ(q,ω)\sigma(q,\omega) and κ(q,ω)\kappa(q,\omega). The Meissner stiffness goes to zero rapidly with system size for both integrable and non-integrable systems. The Drude weight shows signs of diffusion in the non-integrable system and ballistic behavior in the integrable system. The dynamical conductivities are also consistent with ballistic and diffusive behavior in the integrable and non-integrable systems respectively.Comment: 4 pages, 4 figure

    Comparative study of theoretical methods for nonequilibrium quantum transport

    Full text link
    We present a detailed comparison of three different methods designed to tackle nonequilibrium quantum transport, namely the functional renormalization group (fRG), the time-dependent density matrix renormalization group (tDMRG), and the iterative summation of real-time path integrals (ISPI). For the nonequilibrium single-impurity Anderson model (including a Zeeman term at the impurity site), we demonstrate that the three methods are in quantitative agreement over a wide range of parameters at the particle-hole symmetric point as well as in the mixed-valence regime. We further compare these techniques with two quantum Monte Carlo approaches and the time-dependent numerical renormalization group method.Comment: 19 pages, 7 figures; published versio

    Phase diagram of an anisotropic frustrated ferromagnetic spin-1/2 chain in a magnetic field: a density matrix renormalization group study

    Get PDF
    We study the phase diagram of a frustrated spin-1/2 ferromagnetic chain with anisotropic exchange interactions in an external magnetic field, using the density matrix renormalization group method. We show that an easy-axis anisotropy enhances the tendency towards multimagnon bound states, while an easy-plane anisotropy favors chirally ordered phases. In particular, a moderate easy-plane anisotropy gives rise to a quantum phase transition at intermediate magnetization. We argue that this transition is related to the finite-field phase transition experimentally observed in the spin-1/2 compound LiCuVO_4.Comment: The final published versio

    Lower bounds for the conductivities of correlated quantum systems

    Full text link
    We show how one can obtain a lower bound for the electrical, spin or heat conductivity of correlated quantum systems described by Hamiltonians of the form H = H0 + g H1. Here H0 is an interacting Hamiltonian characterized by conservation laws which lead to an infinite conductivity for g=0. The small perturbation g H1, however, renders the conductivity finite at finite temperatures. For example, H0 could be a continuum field theory, where momentum is conserved, or an integrable one-dimensional model while H1 might describe the effects of weak disorder. In the limit g to 0, we derive lower bounds for the relevant conductivities and show how they can be improved systematically using the memory matrix formalism. Furthermore, we discuss various applications and investigate under what conditions our lower bound may become exact.Comment: Title changed; 9 pages, 2 figure
    • …
    corecore